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7 ETM+, and Landsat 8 OLI sensors. Reflectance values for 2150 different wavelengths were 
binned to 6 or 7 bands, depending on the sensor. These binned values simulate how these sensors 
detect the spectral reflectance of these 
guano samples. 

A partial least squares regression 
(PLSR) modeling approach was used to 
associate stable isotope values (and 
therefore diet) to the convolved spectra. 
This approach decomposes covariates (in 
this case, reflectance values for each 
spectral band of the aforementioned 
sensors) into ‘principal components’, which 
are fit to predict the response variable (i.e., 
δ15N or δ13C values obtained from SIA). 
The appropriate number of principal 
components was selected by minimizing 
the root mean square error. 

Results from these analyses reveal that 
spectra obtained from these satellite sensors 
can indeed predict δ15N (our proxy for 
penguin diet) with high confidence. Spectra 
convolved to the relevant Landsat 8 OLI bands 
explain 82% of the variance in δ15N values (Fig. 1). 
These results are based on a subset of the samples collected thus far (less than one third) - this 
relationship is expected to improve once all available samples are processed. 

Investigating dietary change from Landsat imagery 

To examine potential changes in the spectral properties of penguin colonies over time, we 
obtained spectral reflectance values derived from the Landsat 4 TM, Landsat 5 TM, Landsat 7 
ETM+, and Landsat 8 OLI sensors. Spectral information was acquired from an automated 
algorithm designed to detect Adélie penguin (Pygoscelis adeliae) colonies from Landsat imagery 
(Schwaller et al. 2013). 

Using these reflectance values and the quantitative relationship derived from the PLSR 
analyses outlined above, we predicted δ15N values (our diet proxy) at these Adélie penguin 
colonies, dating back to 1984. To investigate potential changes in penguin diet over time, we 
modeled these predicted δ15N values using a hierarchical Bayesian approach, which allowed us 
to treat missing data in time series as latent states to be sampled and allowed us to better assess 
parameter uncertainty (Gelman and Hill 2006). The response variable (𝑦 = 𝛿15𝑁) was modeled 
as normally distributed with mean 𝜇𝑖𝑗 that is a function of year (𝑖) with location (𝑗)-specific slope 

Figure 1. Empirically measured vs. PLSR 
predicted δ15N values. Guano spectra used was 
convolved to the spectral designations of Landsat 8 
OLI bands. 1:1 line shown in black. 
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